{ "id": "math/0102214", "version": "v1", "published": "2001-02-27T18:22:32.000Z", "updated": "2001-02-27T18:22:32.000Z", "title": "Upper Bound for the Coefficients of Chromatic polynomials", "authors": [ "Shu-Chiuan Chang" ], "comment": "9 pages, Latex", "categories": [ "math.CO" ], "abstract": "This paper describes an improvement in the upper bound for the magnitude of a coefficient of a term in the chromatic polynomial of a general graph. If $a_r$ is the coefficient of the $q^r$ term in the chromatic polynomial $P(G,q)$, where $q$ is the number of colors, then we find $a_r \\le {e \\choose v-r} - {e-g+2 \\choose v-r-g+2} + {e-k_g-g+2 \\choose v-r-g+2} - \\sum _{n=1}^{k_g-\\ell_g}\\sum_{m=1}^{\\ell_g-1} {e-g+1-n-m \\choose v-r-g} - \\delta_{g,3}\\sum_{n=1}^{k_g+\\ell_{g+1}^*-\\ell_g} {e-\\ell_g-g+1-n \\choose v-r-g}$, where $k_g$ is the number of circuits of length $g$ and $\\ell_g$ and $\\ell_{g+1}^*$ are certain numbers defined in the text.", "revisions": [ { "version": "v1", "updated": "2001-02-27T18:22:32.000Z" } ], "analyses": { "subjects": [ "05C15" ], "keywords": [ "chromatic polynomial", "upper bound", "coefficient", "general graph" ], "note": { "typesetting": "LaTeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2001math......2214C" } } }