{ "id": "math/0102203", "version": "v2", "published": "2001-02-26T23:20:11.000Z", "updated": "2001-09-01T17:17:50.000Z", "title": "The T^1-lifting theorem in positive characteristic", "authors": [ "Stefan Schroeer" ], "comment": "13 pages, minor changes, to appear in J. Algebraic Geom", "journal": "J. Algebraic Geom. 12 (2003), 699-714", "categories": [ "math.AG" ], "abstract": "Replacing symmetric powers by divided powers and working over Witt vectors instead of ground fields, I generalize Kawamatas T^1-lifting theorem to characteristic p>0. Combined with the work of Deligne-Illusie on degeneration of the Hodge-de Rham spectral sequences, this gives unobstructedness for certain Calabi-Yau varieties with free crystalline cohomology modules.", "revisions": [ { "version": "v2", "updated": "2001-09-01T17:17:50.000Z" } ], "analyses": { "subjects": [ "14D06", "14F40", "14J32", "32G05" ], "keywords": [ "positive characteristic", "hodge-de rham spectral sequences", "free crystalline cohomology modules", "witt vectors", "replacing symmetric powers" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2001math......2203S" } } }