{ "id": "math/0102201", "version": "v1", "published": "2001-02-26T20:30:20.000Z", "updated": "2001-02-26T20:30:20.000Z", "title": "Singularities of Pairs via Jet Schemes", "authors": [ "Mircea Mustata" ], "comment": "21 pages; LaTeX", "journal": "J. Amer. Math. Soc. 15 (2002), 599-615.", "categories": [ "math.AG" ], "abstract": "Let X be a smooth variety and Y a closed subscheme of X. By comparing motivic integrals on X and on a log resolution of (X,Y), we prove the following formula for the log canonical threshold of (X,Y): c(X,Y)=dim X-sup_m{(dim Y_m}/(m+1)}, where Y_m is the mth jet scheme of Y. We show how this formula can be used to study the log canonical threshold. In particular, we give a proof of the Semicontinuity theorem of Demailly and Koll\\'ar.", "revisions": [ { "version": "v1", "updated": "2001-02-26T20:30:20.000Z" } ], "analyses": { "subjects": [ "14B05", "14E15" ], "keywords": [ "log canonical threshold", "singularities", "mth jet scheme", "comparing motivic integrals", "semicontinuity theorem" ], "tags": [ "journal article" ], "publication": { "publisher": "AMS", "journal": "J. Amer. Math. Soc." }, "note": { "typesetting": "LaTeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2001math......2201M" } } }