{ "id": "math/0102200", "version": "v1", "published": "2001-02-26T20:14:10.000Z", "updated": "2001-02-26T20:14:10.000Z", "title": "Fast graphs for the random walker", "authors": [ "Balint Virag" ], "comment": "22 pages", "journal": "Probab. Theory Related Fields 124 (2002), no. 1, 50-72", "doi": "10.1007/s004400200200", "categories": [ "math.PR" ], "abstract": "Consider the time T_oz when the random walk on a weighted graph started at the vertex o first hits the vertex set z. We present lower bounds for T_oz in terms of the volume of z and the graph distance between o and z. The bounds are for expected value and large deviations, and are asymptotically sharp. We deduce rate of escape results for random walks on infinite graphs of exponential or polynomial growth, and resolve a conjecture of Benjamini and Peres.", "revisions": [ { "version": "v1", "updated": "2001-02-26T20:14:10.000Z" } ], "analyses": { "subjects": [ "60J15", "60F15", "60J80" ], "keywords": [ "random walker", "fast graphs", "first hits", "lower bounds", "graph distance" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2001math......2200V" } } }