{ "id": "math/0101138", "version": "v4", "published": "2001-01-17T02:32:23.000Z", "updated": "2003-01-11T22:11:23.000Z", "title": "Volume change under drilling", "authors": [ "Ian Agol" ], "comment": "Published by Geometry and Topology at http://www.maths.warwick.ac.uk/gt/GTVol6/paper27.abs.html", "journal": "Geom. Topol. 6(2002) 905-916", "categories": [ "math.GT", "math.DG" ], "abstract": "Given a hyperbolic 3-manifold M containing an embedded closed geodesic, we estimate the volume of a complete hyperbolic metric on the complement of the geodesic in terms of the geometry of M. As a corollary, we show that the smallest volume orientable hyperbolic 3-manifold has volume >.32 .", "revisions": [ { "version": "v4", "updated": "2003-01-11T22:11:23.000Z" } ], "analyses": { "subjects": [ "57M50", "53C15", "53C22" ], "keywords": [ "volume change", "smallest volume orientable hyperbolic", "complete hyperbolic metric", "complement", "embedded closed geodesic" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }