{ "id": "math/0101121", "version": "v1", "published": "2001-01-14T16:25:06.000Z", "updated": "2001-01-14T16:25:06.000Z", "title": "A renormalized Riemann-Roch formula and the Thom isomorphism for the free loop space", "authors": [ "Matthew Ando", "Jack Morava" ], "comment": "to appear in Contemporary Math. [The Milgram Festschrift, ed. A. Adem, R. Cohen, G. Carlsson]", "categories": [ "math.AT", "math-ph", "math.MP", "math.QA" ], "abstract": "Let E be a circle-equivariant complex-orientable cohomology theory. We show that the fixed-point formula applied to the free loopspace of a manifold X can be understood as a Riemann-Roch formula for the quotient of the formal group of E by a free cyclic subgroup. The quotient is not representable, but (locally at p) its p-torsion subgroup is, by a p-divisible group of height one greater than the formal group of E.", "revisions": [ { "version": "v1", "updated": "2001-01-14T16:25:06.000Z" } ], "analyses": { "subjects": [ "57R91", "55N20", "14L05", "19L10", "55P92" ], "keywords": [ "free loop space", "renormalized riemann-roch formula", "thom isomorphism", "formal group", "circle-equivariant complex-orientable cohomology theory" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2001math......1121A" } } }