{ "id": "math/0101009", "version": "v2", "published": "2001-01-01T18:00:57.000Z", "updated": "2001-07-13T18:13:54.000Z", "title": "A (conjectural) 1/3-phenomenon for the number of rhombus tilings of a hexagon which contain a fixed rhombus", "authors": [ "Christian Krattenthaler" ], "comment": "16 pages, AmS-LaTeX, uses TeXDraw; a few typos corrected", "journal": "in: Number Theory and Discrete Mathematics, A. K. Agarwal et al., eds., Hindustan Book Agency, New Delhi, 2002, pp. 13-30.", "categories": [ "math.CO" ], "abstract": "We state, discuss, provide evidence for, and prove in special cases the conjecture that the probability that a random tiling by rhombi of a hexagon with side lengths $2n+a,2n+b,2n+c,2n+a,2n+b,2n+c$ contains the (horizontal) rhombus with coordinates $(2n+x,2n+y)$ is equal to ${1/3} + g_{a,b,c,x,y}(n) {\\binom {2n}{n}}^3 / \\binom {6n}{3n}$, where $g_{a,b,c,x,y}(n)$ is a rational function in $n$. Several specific instances of this \"1/3-phenomenon\" are made explicit.", "revisions": [ { "version": "v2", "updated": "2001-07-13T18:13:54.000Z" } ], "analyses": { "subjects": [ "05A15", "05A19", "05B45", "33C20", "33C45", "52C20" ], "keywords": [ "rhombus tilings", "fixed rhombus", "conjectural", "special cases", "side lengths" ], "tags": [ "journal article" ], "note": { "typesetting": "LaTeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2001math......1009K" } } }