{ "id": "math/0012033", "version": "v1", "published": "2000-12-05T22:00:11.000Z", "updated": "2000-12-05T22:00:11.000Z", "title": "On the chromatic roots of generalized theta graphs", "authors": [ "Jason Brown", "Carl Hickman", "Alan D. Sokal", "David G. Wagner" ], "comment": "LaTex2e, 25 pages including 2 figures", "journal": "J. Combin. Theory B 83, 272-297 (2001)", "categories": [ "math.CO", "cond-mat.stat-mech", "math-ph", "math.MP" ], "abstract": "The generalized theta graph \\Theta_{s_1,...,s_k} consists of a pair of endvertices joined by k internally disjoint paths of lengths s_1,...,s_k \\ge 1. We prove that the roots of the chromatic polynomial $pi(\\Theta_{s_1,...,s_k},z) of a k-ary generalized theta graph all lie in the disc |z-1| \\le [1 + o(1)] k/\\log k, uniformly in the path lengths s_i. Moreover, we prove that \\Theta_{2,...,2} \\simeq K_{2,k} indeed has a chromatic root of modulus [1 + o(1)] k/\\log k. Finally, for k \\le 8 we prove that the generalized theta graph with a chromatic root that maximizes |z-1| is the one with all path lengths equal to 2; we conjecture that this holds for all k.", "revisions": [ { "version": "v1", "updated": "2000-12-05T22:00:11.000Z" } ], "analyses": { "subjects": [ "05C15", "30C15", "82B20" ], "keywords": [ "chromatic root", "k-ary generalized theta graph", "path lengths equal", "internally disjoint paths", "chromatic polynomial" ], "tags": [ "journal article" ], "note": { "typesetting": "LaTeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2000math.....12033B" } } }