{ "id": "math/0012025", "version": "v2", "published": "2000-12-04T18:58:56.000Z", "updated": "2000-12-27T14:41:02.000Z", "title": "Semi-infinite A-variations of Hodge structure over extended Kahler cone", "authors": [ "S. A. Merkulov" ], "comment": "24 pages; small corrections", "journal": "Intern. Math. Research Notices 21 (2001) 1111-1139", "categories": [ "math.AG" ], "abstract": "This is an expanded comment on Barannikov's paper math.AG/0006193. A symplectic version of his construction is discussed. It is shown that the duality transformation for mirror torus fibrations over the same Monge-Ampere manifold exchanges semi-infinite A-variations of Hodge structure introduced in this paper with Barannikov's semi-infinite B-variations of Hodge structure.", "revisions": [ { "version": "v2", "updated": "2000-12-27T14:41:02.000Z" } ], "analyses": { "keywords": [ "hodge structure", "extended kahler cone", "monge-ampere manifold exchanges semi-infinite a-variations", "mirror torus fibrations", "barannikovs paper math" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2000math.....12025M" } } }