{ "id": "math/0011217", "version": "v1", "published": "2000-11-26T17:28:02.000Z", "updated": "2000-11-26T17:28:02.000Z", "title": "Toric Varieties in Hilbert Schemes", "authors": [ "Heather Russell" ], "categories": [ "math.AG" ], "abstract": "For an arbitrary field K, let I be an ideal in the ring K[[x,y]] expressible as a polynomial in either the pair of ideals (x, y^4) and (x,y) or the pair (x,y^3) and (x^2, y). Let G be the group of automorphisms of K[[x,y]] sending the ideal (x,y^2) to itself. Then the normalization of the closure of the G orbit of I is a toric variety. We use the interplay of the properties of Hilbert schemes and toric varieties to study these spaces.", "revisions": [ { "version": "v1", "updated": "2000-11-26T17:28:02.000Z" } ], "analyses": { "subjects": [ "14C05", "14M25" ], "keywords": [ "toric variety", "hilbert schemes", "arbitrary field", "automorphisms", "normalization" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2000math.....11217R" } } }