{ "id": "math/0011102", "version": "v6", "published": "2000-11-15T19:19:30.000Z", "updated": "2003-05-02T16:25:53.000Z", "title": "Analogues of Lehmer's conjecture in positive characteristic", "authors": [ "Amilcar Pacheco" ], "comment": "revised version", "categories": [ "math.NT", "math.AG" ], "abstract": "Let $C$ be a smooth projective irreducible curve defined over a finite field $\\mathbb{F}_q$ and $K=\\mathbb{F}_q(C)$. Let $A\\subset K$ be the ring of functions regular outside a fixed place $\\infty$ of $K$. Let $\\phi:A\\to\\text{End}(\\mathbb{G}_a)$ be a Drinfeld $A$-module of rank $r$ defined over a finite extension $L$ of $K$ and $\\hat{h}_{\\phi}$ its canonical height. Given a non-torsion point $\\alpha$ of $\\phi$ of degree $d$ over $K$, we prove that $\\hat{h}_{\\phi}(\\alpha)\\ge 1/d$. A similar statement is proved for the canonical height of a point of infinite order of a non-constant semi-stable elliptic curve defined over $K$, with the absolute constant 1 replaced by a constant depending on the elliptic curve.", "revisions": [ { "version": "v6", "updated": "2003-05-02T16:25:53.000Z" } ], "analyses": { "keywords": [ "lehmers conjecture", "positive characteristic", "semi-stable elliptic curve", "projective irreducible curve", "functions regular outside" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2000math.....11102P" } } }