{ "id": "math/0011039", "version": "v1", "published": "2000-11-07T17:01:51.000Z", "updated": "2000-11-07T17:01:51.000Z", "title": "Index Growth of hypersurfaces with constant mean curvature", "authors": [ "Pierre Bérard", "Levi Lopes de Lima", "Wayne Rossman" ], "comment": "13 pages, to appear in Mathematische Zeitschrift", "journal": "Math. Zeit. 239 (2002), 99-115", "categories": [ "math.DG", "math-ph", "math.MP" ], "abstract": "In this paper we give the precise index growth for the embedded hypersurfaces of revolution with constant mean curvature (cmc) 1 in $\\R^{n}$ (Delaunay unduloids). When $n=3$, using the asymptotics result of Korevaar, Kusner and Solomon, we derive an explicit asymptotic index growth rate for finite topology cmc 1 surfaces with properly embedded ends. Similar results are obtained for hypersurfaces with cmc bigger than 1 in hyperbolic space.", "revisions": [ { "version": "v1", "updated": "2000-11-07T17:01:51.000Z" } ], "analyses": { "subjects": [ "53A10", "53A35" ], "keywords": [ "constant mean curvature", "hypersurfaces", "explicit asymptotic index growth rate", "precise index growth", "finite topology cmc" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2000math.....11039B" } } }