{ "id": "math/0011006", "version": "v1", "published": "2000-11-01T17:37:37.000Z", "updated": "2000-11-01T17:37:37.000Z", "title": "Incompressible surfaces in link complements", "authors": [ "Ying-Qing Wu" ], "comment": "7 pages, 3 figures. To appear in Proc. AMS", "categories": [ "math.GT" ], "abstract": "We generalize a theorem of Finkelstein and Moriah and show that if a link $L$ has a $2n$-plat projection satisfying certain conditions, then its complement contains some closed essential surfaces. In most cases these surfaces remain essential after any totally nontrivial surgery on $L$.", "revisions": [ { "version": "v1", "updated": "2000-11-01T17:37:37.000Z" } ], "analyses": { "subjects": [ "57M25" ], "keywords": [ "link complements", "incompressible surfaces", "surfaces remain essential", "closed essential surfaces", "complement contains" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2000math.....11006W" } } }