{ "id": "math/0010323", "version": "v2", "published": "2000-10-31T19:22:35.000Z", "updated": "2001-01-17T23:21:28.000Z", "title": "Zariski theorems and diagrams for braid groups", "authors": [ "David Bessis" ], "comment": "21 pages", "doi": "10.1007/s002220100155", "categories": [ "math.GR", "math.AT" ], "abstract": "Empirical properties of generating systems for complex reflection groups and their braid groups have been observed by Orlik-Solomon and Brou\\'e-Malle-Rouquier, using Shephard-Todd classification. We give a general existence result for presentations of braid groups, which partially explains and generalizes the known empirical properties. Our approach is invariant-theoretic and does not use the classification. The two ingredients are Springer theory of regular elements and a Zariski-like theorem.", "revisions": [ { "version": "v2", "updated": "2001-01-17T23:21:28.000Z" } ], "analyses": { "subjects": [ "20F36" ], "keywords": [ "braid groups", "zariski theorems", "complex reflection groups", "general existence result", "empirical properties" ], "tags": [ "journal article" ], "publication": { "journal": "Inventiones Mathematicae", "year": 2001, "month": "Sep", "volume": 145, "number": 3, "pages": 487 }, "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2001InMat.145..487B" } } }