{ "id": "math/0010212", "version": "v1", "published": "2000-10-22T21:13:40.000Z", "updated": "2000-10-22T21:13:40.000Z", "title": "Unknotting tunnels and Seifert surfaces", "authors": [ "Martin Scharlemann", "Abigail Thompson" ], "comment": "29 pages, 20 figures", "categories": [ "math.GT" ], "abstract": "Let $K$ be a knot with an unknotting tunnel $\\gamma$ and suppose that $K$ is not a 2-bridge knot. There is an invariant $\\rho = p/q \\in \\mathbb{Q}/2 \\mathbb{Z}$, $p$ odd, defined for the pair $(K, \\gamma)$. The invariant $\\rho$ has interesting geometric properties: It is often straightforward to calculate; e. g. for $K$ a torus knot and $\\gamma$ an annulus-spanning arc, $\\rho(K, \\gamma) = 1$. Although $\\rho$ is defined abstractly, it is naturally revealed when $K \\cup \\gamma$ is put in thin position. If $\\rho \\neq 1$ then there is a minimal genus Seifert surface $F$ for $K$ such that the tunnel $\\gamma$ can be slid and isotoped to lie on $F$. One consequence: if $\\rho(K, \\gamma) \\neq 1$ then $genus(K) > 1$. This confirms a conjecture of Goda and Teragaito for pairs $(K, \\gamma)$ with $\\rho(K, \\gamma) \\neq 1$.", "revisions": [ { "version": "v1", "updated": "2000-10-22T21:13:40.000Z" } ], "analyses": { "subjects": [ "57M25", "57M27" ], "keywords": [ "unknotting tunnel", "minimal genus seifert surface", "thin position", "interesting geometric properties", "torus knot" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2000math.....10212S" } } }