{ "id": "math/0010182", "version": "v1", "published": "2000-10-18T04:17:45.000Z", "updated": "2000-10-18T04:17:45.000Z", "title": "Fundamental group of sextics of torus type", "authors": [ "Mutsuo Oka", "Duc Tai Pho" ], "comment": "27 pages, 14 figures", "categories": [ "math.AG" ], "abstract": "We show that the fundamental group of the complement of any irreducible tame torus sextics in $\\bf P^2$ is isomorphic to $\\bf Z_2*\\bf Z_3$ except one class. The exceptional class has the configuration of the singularities $\\{C_{3,9},3A_2\\}$ and the fundamental group is bigger than $\\bf Z_2*\\bf Z_3$. In fact, the Alexander polynomial is given by $(t^2-t+1)^2$. For the proof, we first reduce the assertion to maximal curves and then we compute the fundamental groups for maximal tame torus curves.", "revisions": [ { "version": "v1", "updated": "2000-10-18T04:17:45.000Z" } ], "analyses": { "subjects": [ "14H30", "14H45", "32S55" ], "keywords": [ "fundamental group", "torus type", "maximal tame torus curves", "irreducible tame torus sextics", "exceptional class" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2000math.....10182O" } } }