{ "id": "math/0010062", "version": "v5", "published": "2000-10-06T18:16:28.000Z", "updated": "2003-06-10T12:16:23.000Z", "title": "Statistical properties of unimodal maps: the quadratic family", "authors": [ "Artur Avila", "Carlos Gustavo Moreira" ], "comment": "42 pages, no figures, fifth version, to appear in Annals of Mathematics", "categories": [ "math.DS" ], "abstract": "We prove that almost every non-regular real quadratic map is Collet-Eckmann and has polynomial recurrence of the critical orbit (proving a conjecture by Sinai). It follows that typical quadratic maps have excellent ergodic properties, as exponential decay of correlations (Keller and Nowicki, Young) and stochastic stability in the strong sense (Baladi and Viana). This is an important step to get the same results for more general families of unimodal maps.", "revisions": [ { "version": "v5", "updated": "2003-06-10T12:16:23.000Z" } ], "analyses": { "subjects": [ "37E05", "37F10" ], "keywords": [ "unimodal maps", "statistical properties", "quadratic family", "non-regular real quadratic map", "excellent ergodic properties" ], "note": { "typesetting": "TeX", "pages": 42, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2000math.....10062A" } } }