{ "id": "math/0009203", "version": "v2", "published": "2000-09-22T14:10:24.000Z", "updated": "2001-08-27T19:59:17.000Z", "title": "The Moduli of Flat PU(p,p)-Structures with Large Toledo Invariants", "authors": [ "Eyal Markman", "Eugene Z. Xia" ], "comment": "16 pages", "categories": [ "math.AG" ], "abstract": "For a compact Riemann surface $X$ of genus $g > 1$, $\\Hom(\\pi_1(X), PU(p,q))/PU(p,q)$ is the moduli space of flat $PU(p,q)$-connections on $X$. There are two invariants, the Chern class $c$ and the Toledo invariant $\\tau$ associated with each element in the moduli. The Toledo invariant is bounded in the range $-2min(p,q)(g-1) \\le \\tau \\le 2min(p,q)(g-1)$. This paper shows that the component, associated with a fixed $\\tau > 2(max(p,q)-1)(g-1)$ (resp. $\\tau < -2(max(p,q)-1)(g-1)$) and a fixed Chern class $c$, is connected (The restriction on $\\tau$ implies $p=q$).", "revisions": [ { "version": "v2", "updated": "2001-08-27T19:59:17.000Z" } ], "analyses": { "subjects": [ "14D20", "14H60" ], "keywords": [ "large toledo invariants", "flat pu", "compact riemann surface", "chern class", "moduli space" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2000math......9203M" } } }