{ "id": "math/0009066", "version": "v2", "published": "2000-09-06T21:04:12.000Z", "updated": "2000-11-22T00:56:58.000Z", "title": "Gravitational Descendants and the Moduli Space of Higher Spin Curves", "authors": [ "Tyler J. Jarvis", "Takashi Kimura", "Arkady Vaintrob" ], "comment": "12 pages, minor changes", "categories": [ "math.AG", "math.DG", "math.QA" ], "abstract": "The purpose of this note is introduce a new axiom (called the Descent Axiom) in the theory of $r$-spin cohomological field theories. This axiom explains the origin of gravitational descendants in this theory. Furthermore, the Descent Axiom immediately implies the Vanishing Axiom, explicating the latter (which has no a priori analog in the theory of Gromov-Witten invariants), in terms of the multiplicativity of the virtual class. We prove that the Descent Axiom holds in the convex case, and consequently in genus zero.", "revisions": [ { "version": "v2", "updated": "2000-11-22T00:56:58.000Z" } ], "analyses": { "subjects": [ "14N35", "53D45", "14H10" ], "keywords": [ "higher spin curves", "gravitational descendants", "moduli space", "spin cohomological field theories", "descent axiom immediately implies" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "inspire": 533608, "adsabs": "2000math......9066J" } } }