{ "id": "math/0008126", "version": "v2", "published": "2000-08-16T15:02:53.000Z", "updated": "2003-12-18T18:24:33.000Z", "title": "A property of the skein polynomial with an application to contact geometry", "authors": [ "A. Stoimenow" ], "comment": "7 pages", "journal": "J. Differential Geom. 77(3) (2007), 555--566.", "categories": [ "math.GT", "math.SG" ], "abstract": "We prove a finiteness property of the values of the skein polynomial of homogeneous knots which allows to establish large classes of such knots to have arbitrarily unsharp Bennequin inequality (for the Thurston-Bennequin invariant of any of their Legendrian embeddings in the standard contact structure of R^3), and a give a short proof that there are only finitely many among these knots that have given genus and given braid index.", "revisions": [ { "version": "v2", "updated": "2003-12-18T18:24:33.000Z" } ], "analyses": { "subjects": [ "57M25", "53C15", "58A30" ], "keywords": [ "skein polynomial", "contact geometry", "application", "standard contact structure", "arbitrarily unsharp bennequin inequality" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2000math......8126S" } } }