{ "id": "math/0007094", "version": "v1", "published": "2000-07-14T23:07:02.000Z", "updated": "2000-07-14T23:07:02.000Z", "title": "Convergence of zeta functions of graphs", "authors": [ "Bryan Clair", "Shahriar Mokhtari-Sharghi" ], "comment": "8 pages, 1 figure", "categories": [ "math.NT", "math.CO" ], "abstract": "The $L^2$-zeta function of an infinite graph Y (defined previously in a ball around zero) has an analytic extension. For a tower of finite graphs covered by Y, the normalized zeta functions of the finite graphs converge to the $L^2$-zeta function of Y.", "revisions": [ { "version": "v1", "updated": "2000-07-14T23:07:02.000Z" } ], "analyses": { "keywords": [ "convergence", "finite graphs converge", "normalized zeta functions", "infinite graph", "analytic extension" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2000math......7094C" } } }