{ "id": "math/0007068", "version": "v1", "published": "2000-07-11T20:08:36.000Z", "updated": "2000-07-11T20:08:36.000Z", "title": "Combinatorial model categories have presentations", "authors": [ "Daniel Dugger" ], "categories": [ "math.AT" ], "abstract": "We show that every combinatorial model category can be obtained, up to Quillen equivalence, by localizing a model category of diagrams of simplicial sets. This says that any combinatorial model category can be built up from a category of `generators' and a set of `relations'---that is, any combinatorial model category has a presentation.", "revisions": [ { "version": "v1", "updated": "2000-07-11T20:08:36.000Z" } ], "analyses": { "keywords": [ "combinatorial model category", "presentation", "quillen equivalence", "simplicial sets" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2000math......7068D" } } }