{ "id": "math/0006034", "version": "v1", "published": "2000-06-05T16:36:34.000Z", "updated": "2000-06-05T16:36:34.000Z", "title": "Summing inclusion maps between symmetric sequence spaces", "authors": [ "Andreas Defant", "Mieczysław Mastyło", "Carsten Michels" ], "comment": "22 pages", "categories": [ "math.FA" ], "abstract": "We prove a substantial extension of a well-known result due to Bennett and Carl: The inclusion of a 2-concave symmetric Banach sequence space E into l_2 is (E,1)-summing, i.e. for every unconditionally summable sequence (x_n) in E the scalar sequence (||x_n||_2) is contained in E. Various applications are given, e.g. to the theory of eigenvalue distribution of compact operators and approximation theory.", "revisions": [ { "version": "v1", "updated": "2000-06-05T16:36:34.000Z" } ], "analyses": { "keywords": [ "symmetric sequence spaces", "summing inclusion maps", "symmetric banach sequence space", "well-known result", "scalar sequence" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2000math......6034D" } } }