{ "id": "math/0005218", "version": "v1", "published": "2000-05-23T00:58:58.000Z", "updated": "2000-05-23T00:58:58.000Z", "title": "The Yang-Mills Measure in the Kauffman Bracket Skein Module", "authors": [ "Doug Bullock", "Charles Frohman", "Joanna Kania-Bartoszynska" ], "comment": "14 pages", "categories": [ "math.GT", "math.QA" ], "abstract": "For each closed, orientable surface F, we construct a local, diffeomorphism invariant trace on the Kauffman bracket skein module K_t(F x [0,1]). The trace is defined when |t| is neither 0 nor 1, and at certain roots of unity. At t = - 1, the trace is integration against the symplectic measure on the SU(2) character variety of the fundamental group of F.", "revisions": [ { "version": "v1", "updated": "2000-05-23T00:58:58.000Z" } ], "analyses": { "keywords": [ "kauffman bracket skein module", "yang-mills measure", "diffeomorphism invariant trace", "symplectic measure", "character variety" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "inspire": 528065, "adsabs": "2000math......5218B" } } }