{ "id": "math/0005119", "version": "v1", "published": "2000-05-11T21:09:20.000Z", "updated": "2000-05-11T21:09:20.000Z", "title": "Affine Lie Algebras and Tame Quivers", "authors": [ "Igor Frenkel", "Anton Malkin", "Maxim Vybornov" ], "comment": "48 pages", "categories": [ "math.RT" ], "abstract": "C.M. Ringel defined Hall algebra associated with the category of representations of a quiver of Dynkin type and gave an explicit description of the structure constants of the corresponding Lie algebra. We utilize functorial properties of the Hall algebra to give a simple proof of Ringel's result, and to generalize it to the case of a quiver of affine type.", "revisions": [ { "version": "v1", "updated": "2000-05-11T21:09:20.000Z" } ], "analyses": { "keywords": [ "affine lie algebras", "tame quivers", "affine type", "ringels result", "simple proof" ], "note": { "typesetting": "TeX", "pages": 48, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2000math......5119F" } } }