{ "id": "math/0005013", "version": "v1", "published": "2000-05-02T06:13:21.000Z", "updated": "2000-05-02T06:13:21.000Z", "title": "Functions of Baire class one", "authors": [ "Denny H. Leung", "Wee-Kee Tang" ], "categories": [ "math.CA", "math.FA" ], "abstract": "Let $K$ be a compact metric space. A real-valued function on $K$ is said to be of Baire class one (Baire-1) if it is the pointwise limit of a sequence of continuous functions. In this paper, we study two well known ordinal indices of Baire-1 functions, the oscillation index $\\beta$ and the convergence index $\\gamma$. It is shown that these two indices are fully compatible in the following sense : a Baire-1 function $f$ satisfies $\\beta(f) \\leq \\omega^{\\xi_1} \\cdot \\omega^{\\xi_2}$ for some countable ordinals $\\xi_1$ and $\\xi_2$ if and only if there exists a sequence of Baire-1 functions $(f_n)$ converging to $f$ pointwise such that $\\sup_n\\beta(f_n) \\leq \\omega^{\\xi_1}$ and $\\gamma((f_n)) \\leq \\omega^{\\xi_2}$. We also obtain an extension result for Baire-1 functions analogous to the Tietze Extension Theorem. Finally, it is shown that if $\\beta(f) \\leq \\omega^{\\xi_1}$ and $\\beta(g) \\leq \\omega^{\\xi_2},$ then $\\beta(fg) \\leq \\omega^{\\xi},$ where $\\xi=\\max\\{\\xi_1+\\xi_2, \\xi_2+\\xi_1}\\}.$ These results do not assume the boundedness of the functions involved.", "revisions": [ { "version": "v1", "updated": "2000-05-02T06:13:21.000Z" } ], "analyses": { "subjects": [ "26A21", "03E15", "54C30" ], "keywords": [ "baire class", "compact metric space", "tietze extension theorem", "extension result", "convergence index" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2000math......5013L" } } }