{ "id": "math/0004135", "version": "v1", "published": "2000-04-20T20:09:45.000Z", "updated": "2000-04-20T20:09:45.000Z", "title": "A note on a question of R. Pol concerning light maps", "authors": [ "V. V. Uspenskij" ], "comment": "4 pages. Topology Appl. (to appear)", "categories": [ "math.GN" ], "abstract": "Let f:X -> Y be an onto map between compact spaces such that all point-inverses of f are zero-dimensional. Let A be the set of all functions u:X -> I=[0,1] such that $u[f^\\leftarrow(y)]$ is zero-dimensional for all y in Y. Do almost all maps u:X -> I, in the sense of Baire category, belong to A? H. Toru\\'nczyk proved that the answer is yes if Y is countable-dimensional. We extend this result to the case when Y has property C.", "revisions": [ { "version": "v1", "updated": "2000-04-20T20:09:45.000Z" } ], "analyses": { "subjects": [ "54C10", "54C35", "54E52", "54F45" ], "keywords": [ "pol concerning light maps", "baire category", "compact spaces", "zero-dimensional", "point-inverses" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2000math......4135U" } } }