{ "id": "math/0004095", "version": "v2", "published": "2000-04-14T15:28:30.000Z", "updated": "2000-08-10T12:03:36.000Z", "title": "Line bundles of type (1,,,1,2,,,2,4,,,4) on Abelian Varieties", "authors": [ "Jaya N. Iyer" ], "comment": "20 pages. Revised version", "categories": [ "math.AG" ], "abstract": "We show birationality of the morphism associated to line bundles $L$ of type $(1,...,1,2,...,2,4,...,4)$ on a generic $g-$dimensional abelian variety into its complete linear system such that $h^0(L)=2^g$. When $g=3$, we describe the image of the abelian threefold and from the geometry of the moduli space $SU_C(2)$ in the linear system $|2\\theta_C|$, we obtain analogous results in $\\p H^0(L)$.", "revisions": [ { "version": "v2", "updated": "2000-08-10T12:03:36.000Z" } ], "analyses": { "subjects": [ "14C20", "14J17", "14J30", "14K10", "14K25" ], "keywords": [ "line bundles", "dimensional abelian variety", "complete linear system", "moduli space", "abelian threefold" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2000math......4095I" } } }