{ "id": "math/0004048", "version": "v1", "published": "2000-04-08T21:34:37.000Z", "updated": "2000-04-08T21:34:37.000Z", "title": "Torsion Elements in the Mapping Class Group of a Surface", "authors": [ "Feng Luo" ], "comment": "14 pages, 6 figures", "categories": [ "math.GT", "math.AG" ], "abstract": "Given a finite set of $r$ points in a closed surface of genus $g$, we consider the torsion elements in the mapping class group of the surface leaving the finite set invariant. We show that the torsion elements generate the mapping class group if and only if $(g, r) \\neq (2, 5k+4)$ for some integer $k$.", "revisions": [ { "version": "v1", "updated": "2000-04-08T21:34:37.000Z" } ], "analyses": { "keywords": [ "mapping class group", "torsion elements generate", "finite set invariant", "closed surface" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2000math......4048L" } } }