{ "id": "math/0003244", "version": "v1", "published": "2000-03-27T00:00:00.000Z", "updated": "2000-03-27T00:00:00.000Z", "title": "Imaginary quadratic fields k with Cl_2(k) = (2,2^m) and Rank Cl_2(k^1) = 2", "authors": [ "Elliot Benjamin", "Franz Lemmermeyer", "Chip Snyder" ], "categories": [ "math.NT" ], "abstract": "We classify all complex quadratic number fields with 2-class group of type (2,2^m) whose Hilbert 2-class fields have class groups of 2-rank equal to 2. These fields all have 2-class field tower of length 2. We still don't know examples of fields with 2-class field tower of length 3, but the smallest candidate is the field with discriminant -1015.", "revisions": [ { "version": "v1", "updated": "2000-03-27T00:00:00.000Z" } ], "analyses": { "keywords": [ "imaginary quadratic fields", "field tower", "complex quadratic number fields", "class groups", "smallest candidate" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2000math......3244B" } } }