{ "id": "math/0003230", "version": "v1", "published": "2000-03-31T13:43:23.000Z", "updated": "2000-03-31T13:43:23.000Z", "title": "Characterizations of ${\\mathbb P}^n$ in arbitrary characteristic", "authors": [ "Yasuyuki Kachi", "János Kollár" ], "comment": "10 pages, LaTeX", "categories": [ "math.AG" ], "abstract": "We prove that a smooth projective variety of dimension n is isomorphic to projective n-space iff the canonical class is -(n+1)-times an ample divisor. In characteristic zero this was proved by Kobayashi-Ochiai. We also extend the second adjunction theorem of Ionescu and Fujita to arbitrary characteristic.", "revisions": [ { "version": "v1", "updated": "2000-03-31T13:43:23.000Z" } ], "analyses": { "subjects": [ "14C20", "14J40", "14J45" ], "keywords": [ "arbitrary characteristic", "characterizations", "second adjunction theorem", "smooth projective variety", "ample divisor" ], "note": { "typesetting": "LaTeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2000math......3230K" } } }