{ "id": "math/0003217", "version": "v2", "published": "2000-03-30T16:18:45.000Z", "updated": "2001-06-20T16:42:15.000Z", "title": "Explicit upper bound for the Weil-Petersson volumes", "authors": [ "Samuel Grushevsky" ], "comment": "13 pages, AMSTeX. Version 2: misprints and references corrected.", "categories": [ "math.AG" ], "abstract": "An explicit upper bound for the Weil-Petersson volumes of the moduli spaces of punctured Riemann surfaces is obtained, using Penner's combinatorial integration scheme with embedded trivalent graphs. It is shown that for a fixed number of punctures n and for genus g going to infinity, the Weil-Petersson volume of M_{g,n} has an upper bound c^g g^{2g}. Here c is an independent of n constant, which is given explicitly.", "revisions": [ { "version": "v2", "updated": "2001-06-20T16:42:15.000Z" } ], "analyses": { "keywords": [ "explicit upper bound", "weil-petersson volume", "penners combinatorial integration scheme", "punctured riemann surfaces", "embedded trivalent graphs" ], "note": { "typesetting": "AMS-TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2000math......3217G" } } }