{ "id": "math/0003153", "version": "v1", "published": "2000-03-24T18:03:26.000Z", "updated": "2000-03-24T18:03:26.000Z", "title": "Gorenstein models of del Pezzo surfaces of degree 1 over Dedekind schemes", "authors": [ "Mikhail Grinenko" ], "comment": "11 pages, AmsLaTex, 1 figure", "categories": [ "math.AG" ], "abstract": "Let R be a Dedekind scheme, $\\nu$ its generic point, X and V del Pezzo surfaces of degree 1 over R that are Gorenstein Mori fiber spaces (as 3-folds germs over the ground field). We study birational maps $\\phi:X\\dasharrow V$ over R which are isomorphisms over the generic point of R. We put down normal forms of such transformations (in suitable coordinates) and give some properties of X and V. In particular, we prove the uniqueness of a smooth model.", "revisions": [ { "version": "v1", "updated": "2000-03-24T18:03:26.000Z" } ], "analyses": { "subjects": [ "14E06", "14E07" ], "keywords": [ "del pezzo surfaces", "dedekind scheme", "gorenstein models", "generic point", "gorenstein mori fiber spaces" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2000math......3153G" } } }