{ "id": "math/0003068", "version": "v1", "published": "2000-03-13T14:05:12.000Z", "updated": "2000-03-13T14:05:12.000Z", "title": "Ricci Curvature, Minimal Volumes, and Seiberg-Witten Theory", "authors": [ "Claude LeBrun" ], "comment": "41 pages, LaTeX2e", "doi": "10.1007/s002220100148", "categories": [ "math.DG", "math.GT" ], "abstract": "We derive new, sharp lower bounds for certain curvature functionals on the space of Riemannian metrics of a smooth compact 4-manifold with a non-trivial Seiberg-Witten invariant. These allow one, for example, to exactly compute the infimum of the L2-norm of Ricci curvature for all complex surfaces of general type. We are also able to show that the standard metric on any complex hyperbolic 4-manifold minimizes volume among all metrics satisfying a point-wise lower bound on sectional curvature plus suitable multiples of the scalar curvature. These estimates also imply new non-existence results for Einstein metrics.", "revisions": [ { "version": "v1", "updated": "2000-03-13T14:05:12.000Z" } ], "analyses": { "keywords": [ "ricci curvature", "minimal volumes", "seiberg-witten theory", "sectional curvature plus suitable multiples", "sharp lower bounds" ], "tags": [ "journal article" ], "publication": { "journal": "Inventiones Mathematicae", "year": 2001, "month": "Aug", "volume": 145, "number": 2, "pages": 279 }, "note": { "typesetting": "LaTeX", "pages": 41, "language": "en", "license": "arXiv", "status": "editable", "inspire": 525226, "adsabs": "2001InMat.145..279L" } } }