{ "id": "math/0002103", "version": "v1", "published": "2000-02-13T15:44:18.000Z", "updated": "2000-02-13T15:44:18.000Z", "title": "Asymptotic density and the asymptotics of partition functions", "authors": [ "Melvyn B. Nathanson" ], "comment": "17 pages. To appear in Acta Math. Hungarica", "categories": [ "math.NT", "math.CO" ], "abstract": "Let A be a set of positive integers with gcd(A) = 1, and let p_A(n) be the partition function of A. Let c = \\pi \\sqrt(2/3). Let \\alpha > 0. It is proved that log p_A(n) ~ c\\sqrt(\\alpha n) if and only if the set A has asymptotic density \\alpha.", "revisions": [ { "version": "v1", "updated": "2000-02-13T15:44:18.000Z" } ], "analyses": { "subjects": [ "11P82", "11P70", "11B05" ], "keywords": [ "asymptotic density", "partition function", "positive integers" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2000math......2103N" } } }