{ "id": "math/0001161", "version": "v1", "published": "2000-01-28T10:55:38.000Z", "updated": "2000-01-28T10:55:38.000Z", "title": "The exterior algebra and `Spin' of an orthogonal g-module", "authors": [ "Dmitri I. Panyushev" ], "comment": "LaTeX 2.09, 30 pages", "journal": "Transformation Groups, 6 (2001), 371-396", "categories": [ "math.AG", "math.RT" ], "abstract": "A well-known result of Kostant gives a description of the G-module structure for the exterior algebra of Lie algebra $\\frak g$. We give a generalization of this result for the isotropy representations of symmetric spaces. If $\\frak g={\\frak g}_0+{\\frak g_1}$ is a Z_2-grading of a simple Lie algebra, we explicitly describe a ${\\frak g}_0$-module $Spin_0({\\frak g}_1)$ such that the exterior algebra of ${\\frak g}_1$ is the tensor square of this module times some power of 2. Although $Spin_0({\\frak g}_1)$ is usually reducible, we show that a Casimir element for ${\\frak g}_0$ always acts scalarly on it. We also a give classification of all orthogonal representations of simple algebraic groups having an exterior algebra of skew-invariants.", "revisions": [ { "version": "v1", "updated": "2000-01-28T10:55:38.000Z" } ], "analyses": { "keywords": [ "exterior algebra", "orthogonal g-module", "simple lie algebra", "simple algebraic groups", "isotropy representations" ], "tags": [ "journal article" ], "note": { "typesetting": "LaTeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2000math......1161P" } } }