{ "id": "math/0001143", "version": "v1", "published": "2000-01-26T06:11:39.000Z", "updated": "2000-01-26T06:11:39.000Z", "title": "On a conjecture of Shokurov: Characterization of toric varieties", "authors": [ "Yuri G. Prokhorov" ], "comment": "13 pages, LaTeX2e", "journal": "Tohoku Math. J. (2), 53(4): 581-592, 2001", "categories": [ "math.AG" ], "abstract": "We verify a special case of V. V. Shokurov's conjecture about characterization of toric varieties. More precisely, let $(X,D=\\sum d_iD_i)$ be a three-dimensional log variety such that $K_X+D$ is numerically trivial and $(X,D)$ has only purely log terminal singularities. In this situation we prove the inequality \\{center} $\\sum d_i\\le \\rk\\Weil(X)/(\\operatorname{algebraic equivalence}) +\\dim(X)$. \\{center} We describe such pairs for which the equality holds and show that all of them are toric.", "revisions": [ { "version": "v1", "updated": "2000-01-26T06:11:39.000Z" } ], "analyses": { "subjects": [ "14J30", "14E30", "14M25" ], "keywords": [ "toric varieties", "characterization", "three-dimensional log variety", "purely log terminal singularities", "special case" ], "tags": [ "journal article" ], "note": { "typesetting": "LaTeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2000math......1143P" } } }