{ "id": "math-ph/9910017", "version": "v1", "published": "1999-10-12T17:09:48.000Z", "updated": "1999-10-12T17:09:48.000Z", "title": "Uniform spectral properties of one-dimensional quasicrystals, III. $α$-continuity", "authors": [ "David Damanik", "Rowan Killip", "Daniel Lenz" ], "comment": "12 pages", "doi": "10.1007/s002200000203", "categories": [ "math-ph", "math.MP" ], "abstract": "We study the spectral properties of discrete one-dimensional Schr\\\"odinger operators with Sturmian potentials. It is shown that the point spectrum is always empty. Moreover, for rotation numbers with bounded density, we establish purely $\\alpha$-continuous spectrum, uniformly for all phases. The proofs rely on the unique decomposition property of Sturmian potentials, a mass-reproduction technique based upon a Gordon-type argument, and on the Jitomirskaya-Last extension of the Gilbert-Pearson theory of subordinacy.", "revisions": [ { "version": "v1", "updated": "1999-10-12T17:09:48.000Z" } ], "analyses": { "subjects": [ "81Q10", "47B80" ], "keywords": [ "uniform spectral properties", "one-dimensional quasicrystals", "sturmian potentials", "continuity", "unique decomposition property" ], "tags": [ "journal article" ], "publication": { "publisher": "Springer", "journal": "Communications in Mathematical Physics", "year": 2000, "volume": 212, "number": 1, "pages": 191 }, "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2000CMaPh.212..191D" } } }