{ "id": "math-ph/9905002", "version": "v1", "published": "1999-05-04T00:53:29.000Z", "updated": "1999-05-04T00:53:29.000Z", "title": "Quasi-Spin Graded-Fermion Formalism and $gl(m|n)\\downarrow osp(m|n)$ Branching Rules", "authors": [ "Mark D. Gould", "Yao-Zhong Zhang" ], "comment": "19 pages, Latex file", "journal": "J. Math. Phys. 40 (1999) 5371-5386", "doi": "10.1063/1.533075", "categories": [ "math-ph", "math.MP", "math.QA", "math.RT" ], "abstract": "The graded-fermion algebra and quasi-spin formalism are introduced and applied to obtain the $gl(m|n)\\downarrow osp(m|n)$ branching rules for the \"two-column\" tensor irreducible representations of gl(m|n), for the case $m\\leq n (n > 2)$. In the case m < n, all such irreducible representations of gl(m|n) are shown to be completely reducible as representations of osp(m|n). This is also shown to be true for the case m=n except for the \"spin-singlet\" representations which contain an indecomposable representation of osp(m|n) with composition length 3. These branching rules are given in fully explicit form.", "revisions": [ { "version": "v1", "updated": "1999-05-04T00:53:29.000Z" } ], "analyses": { "subjects": [ "03.65.Fd", "02.10.Sp" ], "keywords": [ "quasi-spin graded-fermion formalism", "branching rules", "graded-fermion algebra", "tensor irreducible representations", "quasi-spin formalism" ], "tags": [ "journal article" ], "publication": { "publisher": "AIP", "journal": "Journal of Mathematical Physics", "year": 1999, "month": "Nov", "volume": 40, "number": 11, "pages": 5371 }, "note": { "typesetting": "LaTeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1999JMP....40.5371G" } } }