{ "id": "math-ph/0703077", "version": "v2", "published": "2007-03-27T14:58:41.000Z", "updated": "2007-04-26T16:05:33.000Z", "title": "p-Adic Schrödinger-Type Operator with Point Interactions", "authors": [ "S. Albeverio", "S. Kuzhel", "S. Torba" ], "journal": "J. Math. Anal. Appl. 338 (2008), No. 2, 1267-1281", "categories": [ "math-ph", "math.MP", "math.SP" ], "abstract": "A $p$-adic Schr\\\"{o}dinger-type operator $D^{\\alpha}+V_Y$ is studied. $D^{\\alpha}$ ($\\alpha>0$) is the operator of fractional differentiation and $V_Y=\\sum_{i,j=1}^nb_{ij}<\\delta_{x_j}, \\cdot>\\delta_{x_i}$ $(b_{ij}\\in\\mathbb{C})$ is a singular potential containing the Dirac delta functions $\\delta_{x}$ concentrated on points $\\{x_1,...,x_n\\}$ of the field of $p$-adic numbers $\\mathbb{Q}_p$. It is shown that such a problem is well-posed for $\\alpha>1/2$ and the singular perturbation $V_Y$ is form-bounded for $\\alpha>1$. In the latter case, the spectral analysis of $\\eta$-self-adjoint operator realizations of $D^{\\alpha}+V_Y$ in $L_2(\\mathbb{Q}_p)$ is carried out.", "revisions": [ { "version": "v2", "updated": "2007-04-26T16:05:33.000Z" } ], "analyses": { "subjects": [ "47A10", "47A55", "81Q10" ], "keywords": [ "p-adic schrödinger-type operator", "point interactions", "self-adjoint operator realizations", "dirac delta functions", "adic numbers" ], "tags": [ "journal article" ], "publication": { "doi": "10.1016/j.jmaa.2007.06.016", "journal": "Journal of Mathematical Analysis and Applications", "year": 2008, "month": "Feb", "volume": 338, "number": 2, "pages": 1267 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008JMAA..338.1267A" } } }