{ "id": "math-ph/0703049", "version": "v1", "published": "2007-03-14T23:09:13.000Z", "updated": "2007-03-14T23:09:13.000Z", "title": "High energy eigenfunctions of one-dimensional Schrodinger operators with polynomial potentials", "authors": [ "Alexandre Eremenko", "Andrei Gabrielov", "Boris Shapiro" ], "comment": "22 pages, 9 figures", "journal": "Computational Methods and Function Theory, 8 (2008). No. 2, 513--529.", "categories": [ "math-ph", "math.MP" ], "abstract": "For a class of one-dimensional Schrodinger operators with polynomial potentials that includes Hermitian and PT-symmetric operators, we show that the zeros of scaled eigenfunctions have a limit disctibution in the complex plane as the eigenvalues tend to infinity. This limit distribution depends only on the degree of potential and on the boundary conditions.", "revisions": [ { "version": "v1", "updated": "2007-03-14T23:09:13.000Z" } ], "analyses": { "subjects": [ "34B05", "34L20", "34M40", "34M60" ], "keywords": [ "one-dimensional schrodinger operators", "high energy eigenfunctions", "polynomial potentials", "limit distribution depends", "pt-symmetric operators" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math.ph...3049E" } } }