{ "id": "math-ph/0702021", "version": "v1", "published": "2007-02-08T09:48:24.000Z", "updated": "2007-02-08T09:48:24.000Z", "title": "A uniform quantum version of the Cherry theorem", "authors": [ "Carlos Villegas Blas", "Sandro Graffi" ], "comment": "17 pages", "categories": [ "math-ph", "math.MP" ], "abstract": "Consider in $L^2(\\R^2)$ the operator family $H(\\epsilon):=P_0(\\hbar,\\omega)+\\epsilon F_0$. $P_0$ is the quantum harmonic oscillator with diophantine frequency vector $\\om$, $F_0$ a bounded pseudodifferential operator with symbol decreasing to zero at infinity in phase space, and $\\ep\\in\\C$. Then there exist $\\ep^\\ast >0$ independent of $\\hbar$ and an open set $\\Omega\\subset\\C^2\\setminus\\R^2$ such that if $|\\ep|<\\ep^\\ast$ and $\\om\\in\\Om$ the quantum normal form near $P_0$ converges uniformly with respect to $\\hbar$. This yields an exact quantization formula for the eigenvalues, and for $\\hbar=0$ the classical Cherry theorem on convergence of Birkhoff's normal form for complex frequencies is recovered.", "revisions": [ { "version": "v1", "updated": "2007-02-08T09:48:24.000Z" } ], "analyses": { "subjects": [ "81S30", "70H08" ], "keywords": [ "uniform quantum version", "quantum harmonic oscillator", "birkhoffs normal form", "diophantine frequency vector", "exact quantization formula" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math.ph...2021V" } } }