{ "id": "math-ph/0701062", "version": "v3", "published": "2007-01-24T13:07:05.000Z", "updated": "2007-05-21T16:25:04.000Z", "title": "Uncertainty Principle and Quantum Fisher Information - II", "authors": [ "P. Gibilisco", "D. Imparato", "T. Isola" ], "comment": "v2, Minor revision. v3, changes made to conform to version accepted on J. Math. Phys", "doi": "10.1063/1.2748210", "categories": [ "math-ph", "math.MP", "math.OA" ], "abstract": "Heisenberg and Schr{\\\"o}dinger uncertainty principles give lower bounds for the product of variances $Var_{\\rho}(A)\\cdot Var_{\\rho}(B)$, in a state $\\rho$, if the observables $A,B$ are not compatible, namely if the commutator $[A,B]$ is not zero. In this paper we prove an uncertainty principle in Schr{\\\"o}dinger form where the bound for the product of variances $Var_{\\rho}(A)\\cdot Var_{\\rho}(B)$ depends on the area spanned by the commutators $[\\rho,A]$ and $[\\rho,B]$ with respect to an arbitrary quantum version of the Fisher information.", "revisions": [ { "version": "v3", "updated": "2007-05-21T16:25:04.000Z" } ], "analyses": { "keywords": [ "quantum fisher information", "uncertainty principle", "arbitrary quantum version", "commutator", "lower bounds" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }