{ "id": "math-ph/0607071", "version": "v2", "published": "2006-07-31T07:19:18.000Z", "updated": "2007-02-15T02:37:04.000Z", "title": "Strong diamagnetism for general domains and applications", "authors": [ "S. Fournais", "B. Helffer" ], "comment": "A few typos corrected. One argument given in more details. Version to be published in AIF", "categories": [ "math-ph", "math.MP", "math.SP" ], "abstract": "We consider the Neumann Laplacian with constant magnetic field on a regular domain. Let $B$ be the strength of the magnetic field, and let $\\lambda_1(B)$ be the first eigenvalue of the magnetic Neumann Laplacian on the domain. It is proved that $B \\mapsto \\lambda_1(B)$ is monotone increasing for large $B$. Combined with the results of \\cite{FournaisHelffer3}, this implies that all the `third' critical fields for strongly Type II superconductors coincide.", "revisions": [ { "version": "v2", "updated": "2007-02-15T02:37:04.000Z" } ], "analyses": { "keywords": [ "general domains", "strong diamagnetism", "applications", "constant magnetic field", "magnetic neumann laplacian" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.ph...7071F" } } }