{ "id": "math-ph/0604030", "version": "v2", "published": "2006-04-14T03:51:52.000Z", "updated": "2006-09-26T21:05:48.000Z", "title": "Completeness of the set of scattering amplitudes", "authors": [ "A. G. Ramm" ], "doi": "10.1016/j.physleta.2006.07.054", "categories": [ "math-ph", "math.MP" ], "abstract": "Let $f\\in L^2(S^2)$ be an arbitrary fixed function with small norm on the unit sphere $S^2$, and $D\\subset \\R^3$ be an arbitrary fixed bounded domain. Let $k>0$ and $\\alpha\\in S^2$ be fixed. It is proved that there exists a potential $q\\in L^2(D)$ such that the corresponding scattering amplitude $A(\\alpha')=A_q(\\alpha')=A_q(\\alpha',\\alpha,k)$ approximates $f(\\alpha')$ with arbitrary high accuracy: $\\|f(\\alpha')-A_q(\\alpha')_{L^2(S^2)}\\|\\leq\\ve$ where $\\ve>0$ is an arbitrarily small fixed number. This means that the set $\\{A_q(\\alpha')\\}_{\\forall q\\in L^2(D)}$ is complete in $L^2(S^2)$. The results can be used for constructing nanotechnologically \"smart materials\".", "revisions": [ { "version": "v2", "updated": "2006-09-26T21:05:48.000Z" } ], "analyses": { "subjects": [ "35J10", "35P25", "35R30", "74J25", "81V05" ], "keywords": [ "scattering amplitude", "completeness", "arbitrary high accuracy", "small norm", "unit sphere" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }