{ "id": "math-ph/0604013", "version": "v1", "published": "2006-04-06T15:32:09.000Z", "updated": "2006-04-06T15:32:09.000Z", "title": "Scattering matrices and Weyl functions", "authors": [ "Jussi Behrndt", "Mark M. Malamud", "Hagen Neidhardt" ], "comment": "39 pages", "doi": "10.1112/plms/pdn016", "categories": [ "math-ph", "math.MP", "math.SP" ], "abstract": "For a scattering system $\\{A_\\Theta,A_0\\}$ consisting of selfadjoint extensions $A_\\Theta$ and $A_0$ of a symmetric operator $A$ with finite deficiency indices, the scattering matrix $\\{S_\\gT(\\gl)\\}$ and a spectral shift function $\\xi_\\Theta$ are calculated in terms of the Weyl function associated with the boundary triplet for $A^*$ and a simple proof of the Krein-Birman formula is given. The results are applied to singular Sturm-Liouville operators with scalar and matrix potentials, to Dirac operators and to Schr\\\"odinger operators with point interactions.", "revisions": [ { "version": "v1", "updated": "2006-04-06T15:32:09.000Z" } ], "analyses": { "subjects": [ "47A40", "47A55", "47B25", "47B44", "47E05" ], "keywords": [ "weyl function", "scattering matrices", "finite deficiency indices", "spectral shift function", "singular sturm-liouville operators" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 39, "language": "en", "license": "arXiv", "status": "editable" } } }