{ "id": "math-ph/0512047", "version": "v1", "published": "2005-12-14T21:05:17.000Z", "updated": "2005-12-14T21:05:17.000Z", "title": "From Orbital Varieties to Alternating Sign Matrices", "authors": [ "P. Di Francesco", "P. Zinn-Justin" ], "categories": [ "math-ph", "math.CO", "math.MP" ], "abstract": "We study a one-parameter family of vector-valued polynomials associated to each simple Lie algebra. When this parameter $q$ equals -1 one recovers Joseph polynomials, whereas at $q$ cubic root of unity one obtains ground state eigenvectors of some integrable models with boundary conditions depending on the Lie algebra; in particular, we find that the sum of its entries is related to numbers of Alternating Sign Matrices and/or Plane Partitions in various symmetry classes.", "revisions": [ { "version": "v1", "updated": "2005-12-14T21:05:17.000Z" } ], "analyses": { "keywords": [ "alternating sign matrices", "orbital varieties", "simple lie algebra", "ground state eigenvectors", "cubic root" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math.ph..12047D" } } }