{ "id": "math-ph/0511045", "version": "v1", "published": "2005-11-11T21:19:26.000Z", "updated": "2005-11-11T21:19:26.000Z", "title": "A second eigenvalue bound for the Dirichlet Laplacian in hyperbolic space", "authors": [ "Rafael D. Benguria", "Helmut Linde" ], "categories": [ "math-ph", "math.MP" ], "abstract": "Let $\\Omega$ be some domain in the hyperbolic space $\\Hn$ (with $n\\ge 2$) and $S_1$ the geodesic ball that has the same first Dirichlet eigenvalue as $\\Omega$. We prove the Payne-P\\'olya-Weinberger conjecture for $\\Hn$, i.e., that the second Dirichlet eigenvalue on $\\Omega$ is smaller or equal than the second Dirichlet eigenvalue on $S_1$. We also prove that the ratio of the first two eigenvalues on geodesic balls is a decreasing function of the radius.", "revisions": [ { "version": "v1", "updated": "2005-11-11T21:19:26.000Z" } ], "analyses": { "subjects": [ "35P15", "49Rxx", "58Jxx" ], "keywords": [ "second eigenvalue bound", "hyperbolic space", "dirichlet laplacian", "second dirichlet eigenvalue", "geodesic ball" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math.ph..11045B" } } }