{ "id": "math-ph/0511032", "version": "v1", "published": "2005-11-09T20:22:33.000Z", "updated": "2005-11-09T20:22:33.000Z", "title": "A second eigenvalue bound for the Dirichlet Schroedinger operator", "authors": [ "Rafael D. Benguria", "Helmut Linde" ], "doi": "10.1007/s00220-006-0041-1", "categories": [ "math-ph", "math.MP" ], "abstract": "Let $\\lambda_i(\\Omega,V)$ be the $i$th eigenvalue of the Schr\\\"odinger operator with Dirichlet boundary conditions on a bounded domain $\\Omega \\subset \\R^n$ and with the positive potential $V$. Following the spirit of the Payne-P\\'olya-Weinberger conjecture and under some convexity assumptions on the spherically rearranged potential $V_\\star$, we prove that $\\lambda_2(\\Omega,V) \\le \\lambda_2(S_1,V_\\star)$. Here $S_1$ denotes the ball, centered at the origin, that satisfies the condition $\\lambda_1(\\Omega,V) = \\lambda_1(S_1,V_\\star)$. Further we prove under the same convexity assumptions on a spherically symmetric potential $V$, that $\\lambda_2(B_R, V) / \\lambda_1(B_R, V)$ decreases when the radius $R$ of the ball $B_R$ increases. We conclude with several results about the first two eigenvalues of the Laplace operator with respect to a measure of Gaussian or inverted Gaussian density.", "revisions": [ { "version": "v1", "updated": "2005-11-09T20:22:33.000Z" } ], "analyses": { "subjects": [ "35P15", "49Rxx", "81Q10" ], "keywords": [ "second eigenvalue bound", "dirichlet schroedinger operator", "convexity assumptions", "dirichlet boundary conditions", "th eigenvalue" ], "tags": [ "journal article" ], "publication": { "publisher": "Springer", "journal": "Commun. Math. Phys." }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }