{ "id": "math-ph/0510092", "version": "v2", "published": "2005-10-28T15:14:19.000Z", "updated": "2005-11-19T02:45:16.000Z", "title": "Riemannian geometry of ${\\rm Diff}(S^1)/S^1$ and representations of the Virasoro algebra", "authors": [ "M. Gordina", "P. Lescot" ], "categories": [ "math-ph", "math.DG", "math.MP" ], "abstract": "The main result of the paper is a computation of the Ricci curvature of $\\DS/S^1$. Unlike earlier results on the subject, we do not use the K\\\"{a}hler structure symmetries to compute the Ricci curvature, but rather rely on classical finite-dimensional results of Nomizu et al on Riemannian geometry of homogeneous spaces.", "revisions": [ { "version": "v2", "updated": "2005-11-19T02:45:16.000Z" } ], "analyses": { "keywords": [ "riemannian geometry", "virasoro algebra", "representations", "ricci curvature", "main result" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math.ph..10092G" } } }